Intensive production of the Pacific white shrimp,

Litopenaeus vannamei fed two commercial feeds of
differing protein content in a no water exchange,
biofloc-dominated system

David Prangnell¹, Leandro Castro¹, Thomas Zeigler², Craig Browdy², Tim Markey², Darrin Honious³, and Tzachi Samocha¹

¹Texas A&M AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas
²Zeigler Bros., Gardners, Pennsylvania
³YSI, Yellow Springs, Ohio

Aquaculture America 2015 February 19-22, 2015 New Orleans, Louisiana

Introduction

- ➤ Feed accounts for more than 50% of total shrimp productions costs
- ➤ Feed also plays an important role in optimizing shrimp growth and can significantly affect the system's water quality and biofloc composition
- ➤ Interactions between feed, WQ, and productivity resulted in specially designed feeds being developed for super-intensive biofloc-dominated shrimp production systems
- > Vibrio infections regularly restrict shrimp performance in intensive culture systems

Objectives

- ➤ To evaluate the use of a commercial (HI-35) and an experimental (EXP-14) feed formulated for super-intensive biofloc-dominated shrimp production systems for *Litopenaeus vannamei* under no water exchange
- ➤ To study the changes in selected WQ indicators throughout the trial
- ➤ To monitor changes in *Vibrio* populations throughout the trial

- Four 40 m³ EPDM-lined RWs (*Firestone Specialty Products, Indianapolis, IN*) were filled with biofloc-rich water (35 m³) from an earlier nursery trial, and natural seawater (5 m³)
- ➤ Salinity was adjusted to 30 ppt
- ➤ RWs were stocked at 457/m³ with Taura Resistant/Fast-Growth juveniles (5.3 g) raised at the lab from PL (*Shrimp Improvement Systems*, *Islamorada*, *FL*)
- > Study duration: 48 d

- ➤ Each RW had eighteen 5.1 cm airlifts, six 0.9 m long air diffusers (*AeroTube, Colorite Division, Tekni-Plex, Austin, TX*) & a center longitudinal partition over a PVC pipe with spray nozzles fed by a Venturi injector operated by a 2 hp pump
- Chlorinated municipal freshwater was added weekly to compensate for losses to evaporation and particulate matter control
- Raceways were operated with no water exchange

Two RWs were fed Shrimp GR Hyper-Intensive (HI-35) feed while the other two received Shrimp EXP-14 (EXP) feed (*Zeigler Bros., Gardners, PA*)

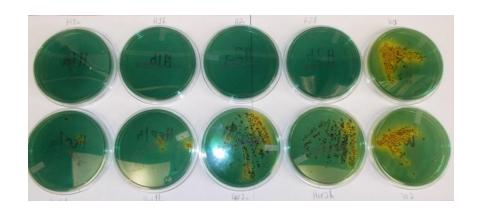
Component	HI-35	EXP
Crude Protein (%)	35	40
Lipid (%)	7	9
Fiber (%)	2	2
Phosphorus (%)	-	1
VPak TM	\checkmark	\checkmark
Price (\$/kg)	1.76	2.10

➤ Rations were initially determined using an assumed FCR of 1.2-1.3, growth of 1.5 g/wk, and mortality of 0.5%/wk, and were adjusted according to twice weekly growth samples and observations of mortality

> Feed was distributed continuously 24/7 using belt

feeders

Water Quality

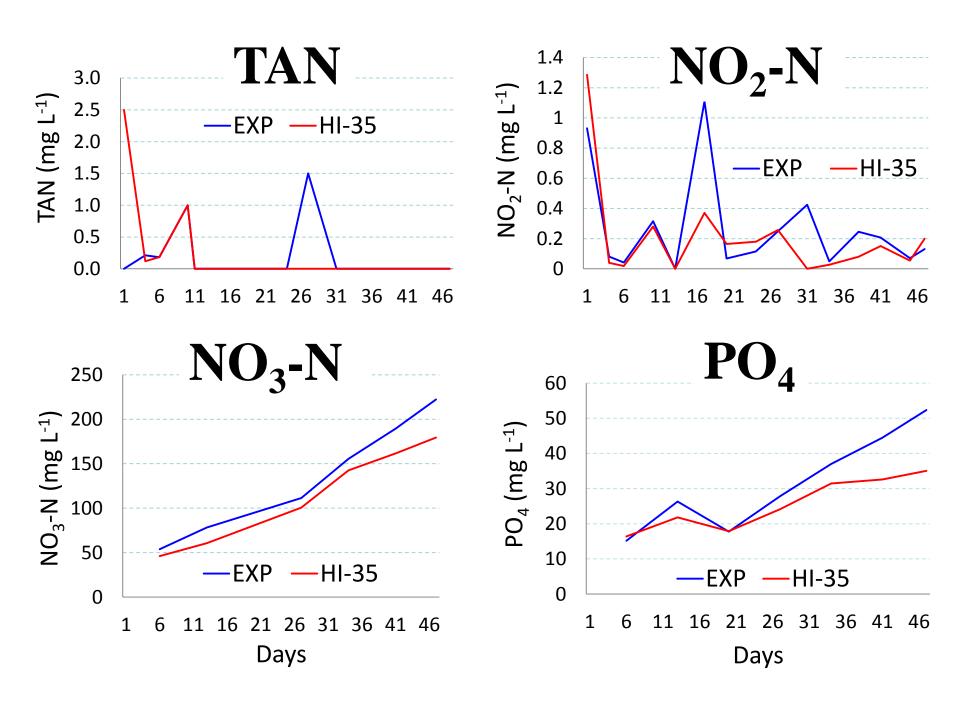

Every RW had an optical DO monitoring probe and YSI 5500D monitoring system (YSI Inc., Yellow Springs, OH)

Monitoring frequency	Parameters	
Twice daily	Temp., Salinity, DO, pH	
Daily	SS	
Every 2 nd day	Alkalinity	
Twice weekly	TAN, NO ₂ -N, TSS	
Weekly	NO ₃ -N, PO ₄ , VSS, Turbidity	

- ➤ Alkalinity adjusted to 160 mg L⁻¹ (as CaCO₃) using sodium bicarbonate every 2nd day
- ➤ pH adjusted to >7 using NaOH on days 33 40
- ➤ O₂ supplemented from day 14 onwards
- ➤ A probiotic was added every 1-3 days: Ecopro® (*EcoMicrobials*, *LLC*, *Miami*, *FL*)
- > Vibrio was monitored 2/wk on TCBS

- ➤ Each RW was outfitted with a small commercial Foam Fractionator (*VL 65 Aquatic Eco Systems*, *Apopka*, *FL*) and a 450 L Settling Tank
- ➤ FFs & STs were used to control particulate matter and dissolved organics, targeting TSS and SS levels in the ranges of 200-300 mg L⁻¹ and 10-14 mL L⁻¹, respectively

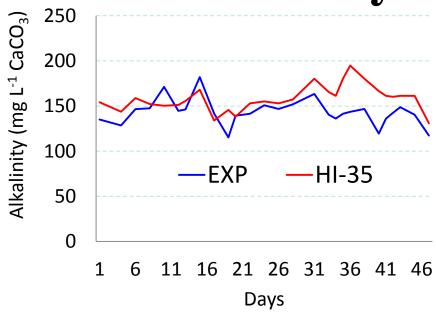
Foam Fractionator


Settling tanks

Daily WQ

	HI-35		EXP	
	Mean	Min - Max	Mean	Min - Max
Temperature (°C)	30.0	27.8 - 31.8	29.9	27.8 - 31.9
DO (mg L ⁻¹)	5.3	3.5 - 6.9	5.3	3.8 - 6.8
рН	7.5	6.8 - 8.0	7.5	6.7 - 8.0
Salinity (ppt)	30.3	29.6 - 31.2	30.4	29.7 - 31.3

- ➤ Ammonia (< 6.00 mg L⁻¹) and nitrite (2.24 mg L⁻¹) levels remained low in all raceways throughout the trial
- ➤ Nitrate-N increased from 45 mg L⁻¹ at the study initiation to a maximum of 232 mg L⁻¹ (EXP) & 189 mg L⁻¹ (HI-35) at the end of the trial
- Phosphate was significantly higher in EXP
- ➤ Although TSS & turbidity levels with the EXP feed were higher, these differences were not significantly different


Summary of alkalinity, particulate matter and turbidity data

	HI-35		EXP	
	Mean	Min-Max	Mean	Min-Max
ALK (mg L ⁻¹)	158	102-199	143	109-189
TSS (mg L^{-1})	348	150-533	364	175-550
VSS (mg L ⁻¹)	253	142-367	221	117-288
$SS (mL L^{-1})$	26.7	8-90	11.2	3.5-31
Turbidity (NTU)	147	94-202	161	102-241

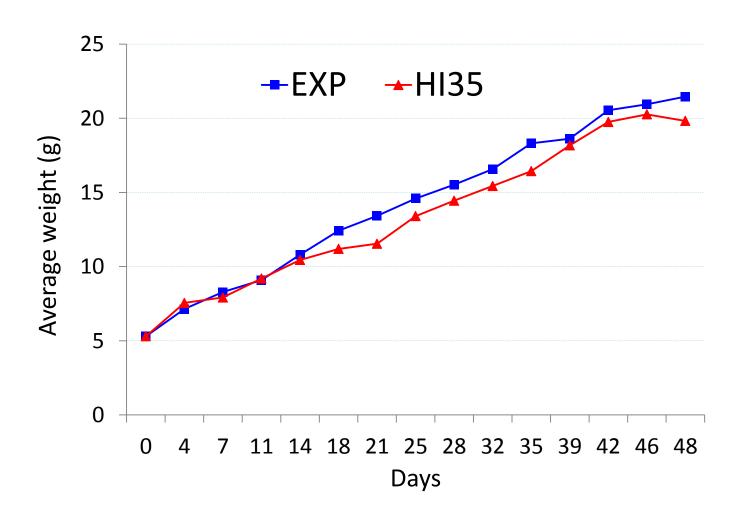
Turbidity/TSS $r^2 = 0.916$; Turbidity/SS $r^2 = 0.267$

Alkalinity

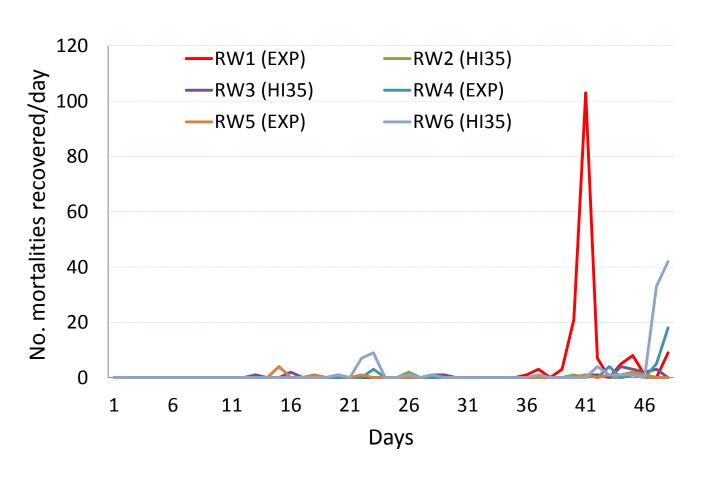
NaHCO₃ added/RW:

EXP: $40.8 \text{ kg} (1.02 \text{ kg/m}^3)$

HI-35: 27.5 kg (0.69 kg/m^3)


Shrimp Performance

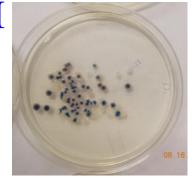
- ➤ No statistically significant differences were found in shrimp performance between treatments
- ➤ Growth was higher with EXP, while survival was higher with HI-35, resulting in similar final total biomass and yield
- ➤ Mortality increased towards the end of the trial due to confirmed *Vibrio* infections



Shrimp Performance

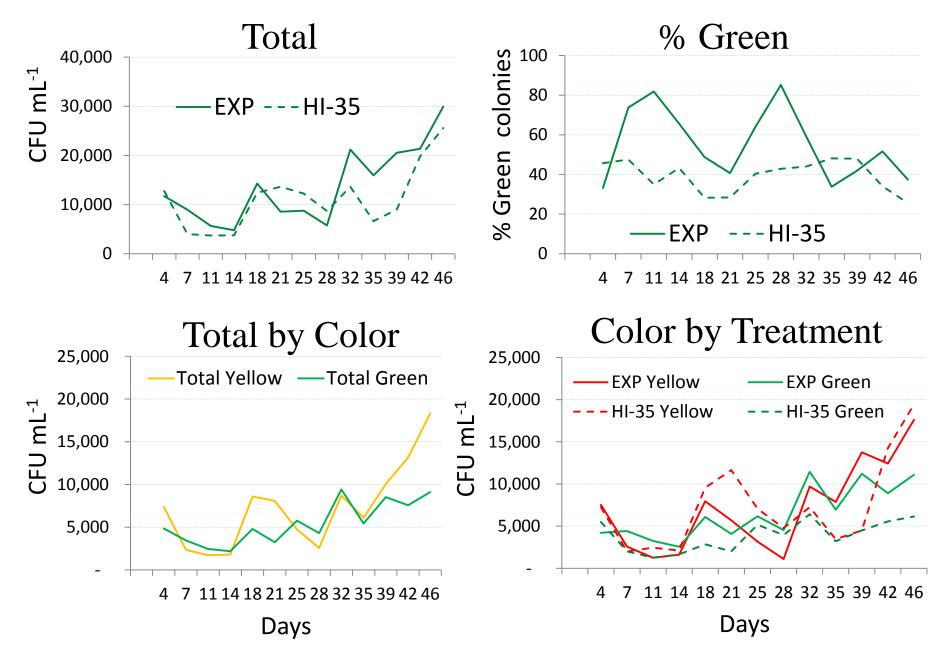
	HI-35	EXP
Final Weight (g)	19.82 ± 0.38	21.46 ± 1.69
Growth (g/wk)	2.10 ± 0.02	2.33 ± 0.21
Total Biomass (kg)	289.5 ± 22.9	294.4 ± 27.9
Yield (kg/m ³)	7.24 ± 0.57	7.36 ± 0.70
FCR	1.68 ± 0.22	1.62 ± 0.22
PER	1.72 ± 0.23	1.55 ± 0.21
Survival (%)	79.86 ± 0.05	75.57 ± 0.13

Mortalities recovered per day



➤ Green colony-forming *Vibrio* were much more abundant than in the prior nursery study, although vibriosis-related mortality was not observed until late in the trial

➤ RambaCHROM plating & preliminary API suggest presence of *V. parahaemolyticus*, *V. vulnificus* & *V. alginolyticus* in culture water, & moribund shrimp



The algae & diatom community may have had a probiotic effect, delaying shrimp mortality

Vibrio colonies in the culture medium

Summary of Vibrio counts on TCBS

	HI-35		EXP	
Vibrio col. (CFU mL ⁻¹)	Mean	Min-Max	Mean	Min-Max
Total	11,221	2,700-30,150	13,652	3,600-35,500
Yellow	7,364	1,600-25,050	6,960	700-20,900
Green	3,858	600-10,600	6,692	1,850-15,900
% Green	39.3	2.9-69.7	55.2	19.5-86.7

Conclusion

- ➤ Under these study conditions, a marketable sized product was produced at a biomass of 7.3 kg/m³
- ➤ Increasing the protein content from 35 to 40% increased the bicarbonate requirement and did not significantly improve shrimp performance (although growth and FCR were better with EXP)
- ➤ The *Vibrio* infections encountered may have limited the development of significant differences in shrimp performance between feed types

Acknowledgements

➤ The National Sea Grant, Texas A&M AgriLife Research for funding

- > Zeigler Bros. for the feed & funding
- > *YSI* for the DO monitoring systems

- > Keeton Industries for the nitrifying bacteria
- > Aquatic Eco-Systems for the foam fractionators

- > Colorite Plastics for the air diffusers
- ➤ Firestone Specialty Products for the EPDM liner

> Florida Organic Aquaculture for funding

